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a b s t r a c t

The present numerical and experimental analysis addresses coupled conduction and radiation heat trans-
fer (CCR) in differentially heated vertical isothermal walls and horizontal insulated walls of a square
enclosure with absorbing, emitting and isotropic scattering participating gray medium. The P1 approxi-
mation solution is utilized as the input signal to the neuron model. The computational domain is treated
by the neural-finite difference method (NFDM) with ray tracing technique of ray emission model (REM)
for the development of improved differential approximation (IDA). The output results are validated with
the results of DOM. The practical implementation of IDA for wide range of radiative parameters are illus-
trated and examined. Experiments have been performed in a square enclosure with solid isothermal
walls made of aluminum and insulated walls with bakelite, thus forming air filled cavity. Finally, the con-
sistence of isotherm pattern of the numerical work with the interferogram captured by Mach–Zehnder
interferometer corroborates the IDA theory and its realistic approach.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The conduction with radiative phenomenon in a participating
medium of lower opacity has been receiving considerable atten-
tion, which exists in numerous compact systems like pendrives,
laptops, micro-processor chips, head lamps of foggy driving, laser
therapy, etc. During operation of these devices, accumulated heat
causes failure or malfunction of electronics circuits. Hence,
researchers are in pursuit of a reliable CCR model for optimal de-
sign of very compact thermophysical systems.

Numerous numerical studies for one-dimensional radiation
models have been reported in the literature. The researchers’ re-
ports on multi-dimensional radiation models are very few due to
complexity during formulation and numerical applications. Also,
most of the radiation models have neglected the conjugate mode
of heat transfer in a quiescent/dynamic participating medium;
which are of practical interest.
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Ismail and Carlos [1] have simulated a conjugate heat transfer
model for double glass window separated with 30 mm air gap
and found that, for Rayleigh number 1084 the diffusive effects
are prominent without convection, consequently the thermal en-
ergy interaction becomes in CCR mode. Hence, it is pertinent that,
CCR mode of heat transfer prevails in a system having very com-
pact shape and size, where the dynamics of the participating media
will not be induced, because of insufficient space; hence the med-
ium remains quiescent. Razzaque et al. [2] implemented finite ele-
ment method for solving CCR mode governing equations and found
convergence difficulty for very low value of wall emissivity and
conduction/radiation parameter, but claimed robustness for simu-
lation of very low opacity without reporting the results. Kim and
Baek [3] examined the CCR model only for overall optical thickness
0.1, 1.0 and 5.0 for non-scattering medium only. Sakami et al. [4]
investigated a new approach of DOM for the CCR problem in a
semitransparent medium for two-dimensional complex enclosures
without considering the very low overall optical thickness (<0.20).
Yuen and Takara [5] studied the CCR problem in a rectangular
enclosure for non-scattering medium for overall optical thickness
0.1, 0.5, 1.0, 2.0 and 5.0, but clearly not mentioned the practical
application of diffusion approximations. Mishra et al. [6] formu-
lated the DOM approach to the collapse dimension method
(CDM) for producing faster results because of not considering the
solid angle, but not mentioned the physical significance of
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Nomenclature

A1 linear anisotropic scattering factor
AR aspect ratio (H/L)
Fi�j view factor from source (i) to a receiver (j)
G irradiation (W/m2)
g dimensionless irradiation
I, I radiation intensity [W/m2], dimensionless radiative

intensity
Ib black body radiation intensity (=rT4/p) [W/m2]
k thermal conductivity [W m�1 K�1]
L characteristic length [m]
q
*

r; q
*

c radiation and conduction heat flux vector [W/m2]
qr, qc non-dimensionalised radiation and conduction heat flux

vector
QR total radiative heat flux
QC total conductive heat flux
RC radiation–conduction parameter ¼ rT3

HL
k

� �
~r location of a domain with direction
S distance of a discrete surface to another sub-surface
_S ODA source
Sr representative source
S average thickness of a radiation element
s0 geometrical distance of a representative source

ŝ direction of propagation of radiation intensity
T absolute temperature [K]
TH, TC hot and cold wall temperatures [K]
X, Y dimensionless co-ordinate

Greek symbols
aa absorption coefficient [1/m]
as scattering coefficient [1/m]
a thermal diffusivity [m2/s]
b total extinction coefficient (aa + as) [1/m]
X solid angle [Sr]
x single scattering albedo as

b

� �
r Stefan–Boltzmann’s constant 5:67� 10�8 W m�2 K�4

� �
e wall emissivity
s total optical depth (bL)
h dimensionless temperature T

TH

� �
dij Kronecker delta

Subscripts
H, C and b hot, cold and bottom wall, respectively
w, m, t, c, h wall, medium, top, cold, hot
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modified CDM. In the group of integral methods, the discrete trans-
fer methods (DTM) have attracted considerable attention in recent
years. Shih and Chen [7] have proposed a discretised intensity
method for two-dimensional system with enclosing radiative and
conductive media, in which the two-dimensional effect of radiative
flux is not taken into consideration. Coelho and Carvalho [8] have
implemented conservative formulation of the DTM in two- and
three-dimensional participating medium with energy conservation
in CCR mode with absorption coefficient of medium 0.25, 0.5 and
1 m�1 only. Raithby and Chui [9] developed a finite-volume meth-
od that uses the same non-orthogonal boundary fitted mesh as
methods for computing fluid flow and convective heat transfer.
Modest [10] and Olfe [11] have tackled the ray effect, i.e. descret-
isation of the angular distribution of intensity by breaking up the
radiation intensity into two parts: the intensity due to medium
and the intensity due to enclosure wall, which leads to modified
discrete ordinate method (MDO) [12,13].

Deterministic methods can deal with anisotropic scattering by
means of spherical harmonics method (SHM), i.e. PN-approxima-
tion. Higher order SHM can also predict stellar radiance from dis-
tant stars. However, higher order formulation is quite exhaustive,
because of mathematical complexity arises during formulation of
PDEs. But, P1 formulation is quite easy and popular because of its
grid compatibility. The P1 results can be modified and improved
by modified differential approximation (MDA)[10] and improved
differential approximation (IDA), respectively, for optically thin
medium without pursuing higher order PN approximation. Ratzel
and Howell [14] and Bayazitoglu et al. [15] had formulated P3

approximation for radiative mode only and examined better re-
sults for lower optical thickness (>0.5). The P1 model should typi-
cally be used for optical thickness >1. But for optical thickness
�1, P1 and Rosseland models are best alternatives as implemented
in Fluent Software [16]. For optically thin problems,instead of
higher order SHM, only the REM [17], MDA [10,18], IDA [19] are
appropriate and compatible for multi-dimensional domain.

Mahapatra et al. [20] had simulated CCR model using DOM for
optical thickness 0.2, 1 and 2, and found lack of accuracy for higher
values. The same remarks had also been cited by Fiveland [21]. But
for lower optical thickness (<0.2) the convergence is not enter-
tained [2]. Mahapatra et al. also developed hybrid model [22] by
blending P1 approximation with DOM, but encountered the same
problem for optical thickness below 0.1. Although, the DOM is
more accurate for optically thin or moderately thick medium, but
for lower overall opacity (<0.1) the numerical results are not re-
ported by many researchers.

The analysis of radiation heat transfer using the radiation ele-
ment method by ray emission model (REM) [17], which is a gener-
alized numerical method for calculating radiation heat transfer
between absorbing, emitting and scattering media and specular
or diffuse surface with arbitrary three-dimensional configurations,
explains the average optical path of the ray. This concept of ray
tracing has been utilized in the present work, with NFDM for
developing the numerical code of a realistic CCR model.

1.1. Present work

The present work is an attempt to implement the virtues of
REM and IDA, with the underlying principle of neuron model
(Appendix) for simulation of very low overall optical thickness
(0.0001) to optically thick (5.0) in a two-dimensional enclosure.
The P1 approximation over predicts the domain temperature 5%
more [23], but after implementing the present model this has been
reduced.

Fortunately, the gray behavior of atmospheric gases, i.e. a
mixture of diatomic O2, N2, linear tri-atomic gas CO2, non-linear
tri-atomic gas H2O, etc., in 296 K are more or less justified [24].
Furthermore, the absorption of the gases in far/near infra-red re-
gion is in bound–bound region with lower energy state. Although,
the assumption of gray nature of the domain is not realistic, but
Modak [25] explained and justified in his work that the gray gas
and isothermal assumption yields accurate predictions of heat flux
in small to moderate size domain but not for large size domain.
This prompts the authors to assume the gray property of air during
simulation of the experimental domain. Han and Baek [26] have
also simulated the natural convection phenomena affected by radi-
ation in cylindrical annuli for non-scattering air with extinction
coefficient 0.3 with gray behavior of air and the isotherms are com-
pared with the experiments of Kuehn and Goldstein [27]. But, no
experimental validation of CCR model has been reported till date,
as far as authors’ knowledge is concerned.



Fig. 1. Computational test domain.

Fig. 2. Radiative intensity within an arbitrary enclosure.
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The intent of the experimental investigation is to demonstrate
the practical implementation of the present CCR model in a square
enclosure with air in cavity. The consistence of isotherm patterns
of numerical results with the interferogram, i.e. experimental con-
tours is discussed and illustrated.

The major thesis of this paper is that, the CCR model may be sim-
ulated for any justified range of conductive and radiative properties
of medium and wall. Also, the practical application of this model has
been illustrated along with validation of numerically obtained iso-
therms with interferograms. This happens, because of the efficiently
applied NFDM concept during simulation of the CCR model.

1.2. Experimental procedure

The purpose of the experiment was to capture the interfero-
gram by Mach–Zehnder interferometer of the physical domain
(10 � 10 � 250 mm) with quiescent air as shown in Fig. 3(a) by
the way the CCR heat transfer through the participating medium
is assessed and visualized.

The detailed of the experimental set up is shown in Fig. 3(c). The
schematic diagram of the test cell used for the experiment is
shown Fig. 3(b). The test cell is made of two vertical isothermal
walls made of polished aluminum and the two horizontal walls
are bakelite. The bakelite walls are placed above and below the
projected portions of the hot and cold baths as shown in Fig.
3(b). The length of the test domain is taken as 250 mm. The com-
pensating cell was fabricated without the hot and cold bath for the
purpose of maintaining the same optical path length of the laser
beam. At the front and back of the test and compensating cell, opti-
cal quality glass windows of 0.9 mm thick, were installed for inter-
ferometric measurement.

A 35 mW, continuous wave (k = 632.8 nm) He–Ne laser is em-
ployed as the coherent light source for the interferometer. The ori-
ginal laser beam is of 1 mm diameter. A spatial filter is required to
expand the beam to any convenient size. In the present experi-
ment, the expanded beam diameter is 20 mm. This expanded beam
is splitted by a beam splitter and one part is passed through the
test cell and other part is passed through the compensating cell
after reflection through a mirror as shown in Fig. 3(c). Again the
test cell beam is reflected by mirror and projected to the second
beam splitter near the screen. The two beams now produce inter-
ference and the fringes are seen on the screen when the beams are
aligned [28]. A CCD (charged coupled device) camera of spatial res-
olution 768 � 576 pixel has been used to capture the interferomet-
ric images. The CCD camera is connected to PC based image
processing system through an 8 bit A/D card.

During the experiment the entire experimental set up was
mounted on four pneumatic isolation mounts, for the purpose
of nullifying the vibration occurred during the flow of hot and
cold oil from the refrigeration unit and the air compressor.
Both the hot and cold bath units and air compressor are kept
away from the set up to avoid the ground vibration. This sta-
bilizes the interferometric images and facilitates better image
acquisition. Finally, after 4 h the steady state was reached.
The fringe pattern was captured by the CCD camera as shown
in Fig. 11. This set up has been developed by DST, India spon-
sored project.

The details of the numerical simulation of this physical domain
are discussed during the validation of the present CCR model.
2. Mathematical analysis

The computational domain is shown with boundary conditions
in Fig. 1. The surfaces enclosing the gray medium are diffusely
emitting radiative energy. (See Fig. 2.)
The radiative transport equation (RTE) in an optical co-ordi-
nates is given by

ŝ � rsI þ I ¼ ð1�xÞIb þ
x
4p

Z
4p

IðŝÞU ŝ � ŝ0ð ÞdX0; ð1Þ

where ŝ and ŝ0 represent the out going and incoming direction,
respectively, dX0 represents the solid angle.

In a gray medium with uniform absorptivity, scattering and
with Uðŝ; ŝ0Þ ¼ 1 Eq. (1) can be reduced to:

ŝ � rsI þ I ¼ ð1�xÞIb þ
x
4p

Z
4p

IðŝÞdX0: ð2Þ

From the definition of irradiation, i.e. radiance approaching a loca-
tion ‘r’ from all direction yields the formulae:

Gð~rÞ ¼
Z

4p
Ið~r; ŝÞ � dX; ð3Þ

where ŝ ¼ sin h � cos / � îþ sin h � sin / � ĵþ cos h � k̂

dX ¼ dA
r2 ¼

r sin h � d/ � rdh
r2 ¼ sin h � dh � d/:

For the integration, the polar angle h varies from 0 to p and azimuthal
angle / varies from 0 to 2p, now integrating for the said limits:Z

4p
dX ¼ 4p;

Z
4p

ŝ � dX ¼ 0;Z
4p

ŝŝdX ¼ 4p
3

dij; and
Z

4p
ŝŝŝdX ¼ 0:
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The radiative flux in a particular direction ŝ is a vector quantity
which is defined as

~qð~rÞ ¼
Z

4p
Ið~r; ŝÞ � ŝdX: ð4Þ

Now taking zeroth moment of Eq. (2) and integrating over the solid
angle becomes:

rs �~q ¼ ð1�xÞð4pIb � GÞ: ð5Þ

Taking the first moment of the equation, i.e. multiplying ŝdX and
integrating over all solid angles:

1
4p
rs � G

Z
4p

ŝŝdXþ 3~q �
Z

4p
ŝŝŝdX

� �

þ 1
4p

G
Z

4p
ŝdXþ 3~q �

Z
4p

ŝŝdX
� �

ffi ð1�xÞIb

Z
4p

ŝdXþ x
4p

G
Z

4p
ŝdX: ð6Þ

For integral of any odd multiple of ŝ is reduces to zero.
Eq. (6) takes the form as

rs �Gdij

3 þ~qdij ¼ 0

)~q ¼ �rsG
3 :

ð7Þ

It is quite evident from the above equation that the negative gradi-
ent of irradiation gives the radiative heat flux. By substituting Eq.
(7) in Eq. (5) the irradiation transport equation is deduces as
follows:

r2
sG� 3ð1�xÞG ¼ �3ð1�xÞ4pIb: ð8Þ

The P1 approximation governing equations and boundary condi-
tions are transformed after utilizing non-dimensional variables as
follows:

h ¼ T
TH

; X ¼ x
L

; Y ¼ y
H

; AR ¼ H
L

; RC ¼ rT3
HL

k
; g ¼ G

rT4
H

s ¼ bL; Ib ¼
Ib

rT4
H

; qc ¼
q
*

c

kTH=L
; qr ¼

q
*

r

kTH=L
:

The energy conservation equation for steady state without heat
generation and considering the quiescent medium:

�kr2T þr~qr ¼ 0: ð9Þ

Now for two-dimensional domain the energy equation becomes:

�k
o2T
ox2 þ

o2T
oy2

 !
þ ð1�xÞð4pIb � GÞ ¼ 0: ð10Þ

The energy equation in the non-dimensional form is expressed here
under:

o2h

oX2 þ
1

AR2

o2h

oY2 ¼ sð1�xÞ � RC½4hðrÞ4 � gðrÞ�: ð11Þ

The boundary conditions for the energy equation are given as

(i) for the hot wall h(0,Y) = 1 for 0 6 Y 6 AR
(ii) for the cold wall hð1;YÞ ¼ TC

TH

� �
¼ 0:5 for 0 6 Y 6 AR

(iii) for the bottom adiabatic wall ~qc þ~qr ¼ 0 for Y = 0 and
0 6 X 6 1

(iv) for the top adiabatic wall ~qc þ~qr ¼ 0 for Y = AR and
0 6 X 6 1.

In the P1 approximation the non-dimensionalised Irradiation trans-
port equation appears as
1
s2

o2g

oX2 þ
o2g

AR2
oY2

 !
� ð1�xÞ 3� A1xð Þg

¼ �ð1�xÞ 3� A1xð Þ4h4: ð13Þ

The boundary conditions (BCs) for all the four walls of the enclosure
requires the emanating radiative heat flux from the walls as ex-
pressed here under

~qr ¼ �
1

3� A1x
rsG; ð14Þ

which depicts the gradient of irradiation at walls.
The wall boundary conditions as derived by the present method

is

2~qr � n̂ ¼
e

2� e
ð4pIb � GÞ: ð15Þ

By combining the above two equations, the following boundary
condition equation is derived, which is more compatible for the
treatment of boundary:

�2� e
e
� 2

3� A1x
� ðn̂ � rsGÞ þ G ¼ 4pIbw: ð16Þ

After non-dimensionalisation the boundary conditions are:

ð�1Þi 2� e
e

2
3� A1x

og
oXi
þ sg ¼ 4sh4

i ð17Þ

for i = 1, 2, 3, 4 hot, cold, bottom and top wall, respectively.

2.1. Improved differential approximation formulation

The equation of transfer with radiative source along a pencil of
ray emanating from wall and source in a particular direction ŝ, the
intensity at a particular location and directed from r0 to r can be
presented,

dI ~r; ŝð Þ
ds

þ I ~r; ŝð Þ ¼ S ~r; ŝð Þ: ð18Þ

This equation is linear differential equation commonly known as
Leibnitz’s linear equation, which can be solved by implementing
the boundary condition at the wall, Jw ¼ Jwð~r0Þ; s ¼ s0s; S ¼ 0; the
equation becomes after putting BCs

I ~r; ŝð Þ ¼ Jw

p
ð~r0Þ:e�ss þ

Z ss

0
S ~r0 þ s0 ŝ; ŝð Þ � e� ss�s0sð Þ ds0s: ð19Þ

In IDA the medium related intensity is

Imð~r; ŝÞ �
Z ss

0
S	ð~r0 þ s0 ŝ; ŝÞ � e�ðss�s0sÞds0s; ð20Þ

where

_Sð~r; ŝÞ ¼ ð1�xÞ_IbðrÞ þ
x
4p

_GðrÞ: ð21Þ

Dot above the variables are adapted for distinguishing ODA
variables.

Hence forth the ODA source as in Eq. (21) may be introduced as
follows for improvement of medium intensity

Imð~r; ŝÞ �
Z ss

0

_Sð~r0 þ s0 ŝ; ŝÞ � e� ss�s0sð Þ ds0s: ð22Þ
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The source term is approximated as

S ~r0 þ s0 ŝ; ŝð Þ � _Sð~r; ŝÞ � ðss � s0sÞ
d _Sð~r; ŝÞ

dss

Imð~r; ŝÞ �
Z ss

0

_Sð~r; ŝÞ � ðss � s0sÞ
d _Sð~r; ŝÞ

dss

" #
e�ðss�s0sÞds0s

) Im �
Z ss

0

_S� ðss � s0sÞ
d _S
dss

" #
e�ssþs0s ds0s: ð23Þ

Here, the ss and s0s are of same meaning in a gray medium and
s0s
ss
¼ numerical value and the double derivative of a linear function

is zero. Now Eq. (23), which is a definite integral can be presented
as

Im�
Z ss

0

_S �e�ssþs0s ds0s�
Z ss

0
ss

d _S
dss

e�ssþs0s ds0sþ
Z ss

0
s0s

d _S
dss

e�ssþs0s ds0s:

Now integrating by parts and considering the limits:

Im � _S� _Se�ss � ss
d _S
dss
þ sse�ss

d _S
dss
þ ss

d _S
dss
� d _S

dss
þ e�ss

d _S
dss

) Im � _Sð1� e�ss Þ � ð1� ð1þ ssÞe�ss Þ d _S
dss

:

ð24Þ

Now for elimination of the differential term the following mathe-
matical treatments are:

Im � ð1� e�ss Þ _S� d _S
dss

1� sse�ss

1� e�ss

� �" #
: ð25Þ

Now, considering the coefficient of differential in Eq. (25) as the
optical thickness

s0 ¼ 1� sse�ss

1� e�ss

� �
¼ bs0

) s0 ¼
Z s0

0
b ~r � s00ŝð Þds00;

ð26Þ

where 0 < s0 < (1,ss) and the s00 is the distance from~r into �ŝ. Now
Eq. (24) may be expressed as

Im � _Sð~r � s0 ŝ; ŝÞð1� e�ss Þ
) Im � Sr 1� e�ssð Þ:

ð27Þ

The opaque wall radiosites are given as

Jwð~rÞ ¼ epIbwð~rÞ þ ð1� eÞ
Z

ŝ�n̂<0
Ið~r; ŝÞ ŝ � n̂j jdX: ð28Þ

This equation again can be solved by standard surface transport
method, such as small zones, to give:

Ji ¼ eipIbi þ ð1� eiÞ
XN

j¼1

½Jje
�sij þ pS	ijð1� e�sijÞ�Fi�j;i¼1;2;3...N: ð29Þ

Once the radiosites are known, the improved values for incident
radiation and radiative heat flux any where inside the medium fol-
low from their definition,

Gð~rÞ ¼ 1
p

Z
4p
½Jwð~rÞ � e�ss þ pSr � ð1� e�ss Þ�dX

¼
Z

A
½Jwð~r0Þ � e�ss þ pSr � ð1� e�ss Þ� cos h0 dA

pS2

ð30Þ

~qð~rÞ ¼ 1
p

Z
4p
½Jwð~rÞe�ss þ pSrð1� e�ss Þ�̂sdX

¼
Z

A
½Jwð~r0Þe�ss þ pSrð1� e�ss Þ�̂s: cos h0dA

pS2 :

ð31Þ
The average optical thickness as explained by ray emission model
(REM) Maruyama [17]. The following average thickness S of the
radiation element in the direction ŝ has been calculated as follows:

S ¼ V
AðŝÞ ; ð32Þ

where V is the volume of the tetrahedron through which the ray
travels from a sub-node to the node.

A ðsÞ is the area projected on to the surface normal to ðsÞ direc-
tion of propagation of the ray. The average optical path of a ray is
defined as

ss ¼ bS: ð33Þ
The calculation of solid angles along with the wall intensity and the
medium related intensity from the discrete surfaces to the other
nodes are calculated by implementing the equations as cited by
Sakami et al. [12,13].

3. Numerical procedure

The finite deference method (FDM) is implemented during
solving the purely conductive energy equation by SOR method
and finally the solution is converged with due accuracy (hm+1 �
hm < 10�8). The FDM scheme utilized 5-node technique in the
domain and image node technique at the insulated walls. This tem-
perature field after the solution of purely conductive energy equa-
tion is utilized as the initial guess temperature field for the CCR
heat transfer energy equation, which is solved by Newton–Raphson
method because of the presence of radiative heat flux (i.e. with h4

expression) with non-linearity in character. Now the irradiation
transfer equation is solved by utilizing the temperature field out
put of Newton–Raphson method with a SOR type of sweep with con-
vergence criteria (gm+1 � gm < 10�7). After getting an irradiation field
both the energy equation and irradiation equations are coupled in a
loop having convergence criteria (hm+1 � hm < 10�8) of the tempera-
ture field where (m + 1) means the new and ‘m’ means the previous
value during the iteration. In this way the numerical solution of the
RTE is worked out by P1 approximation method. The temperature
and irradiation at each node of the computational domain is deliv-
ered as the input signals defined in a model of neuron. The detail
of the model of neuron is discussed with its compatibility to solve
the radiation models [29,30] (Appendix).

Now the ODA source is calculated by Eq. (21). As in Eq. (27) the
representative value of the source (Sr) at each node corresponding
to other sub-nodes is enumerated with the direction of location of
the sub-node by linear interpolation method (back tracking the
ODA source). This generates a global matrix of order 1681 �
1681 for improved representative source values.

The average optical path length from each node to other (one to
one correspondence) is calculated by ray emission model technique
explained in [17]. The global view factor matrix is generated by uti-
lizing Hottel’s cross string method and the corner surface view fac-
tors are calculated by employing contour integration technique.
The improved wall radiosites are calculated by implementing stan-
dard surface transport method with small zones.

The global solid angle matrix is generated by considering the
wall as very small zones and the medium as very small cells having
two orthogonal intersecting planes at the nodal point.

After arriving the improved solution, it was observed the round-
ing of error was eminent which is minimized after utilizing intelli-
gent use of activation function as defined and explained in the
model of neuron [29,30] and Appendix. The improved irradiation
matrix is utilized and the energy equation is solved without any
relaxation factor (i.e. accepting the fresh values in each sweep)
with a few number of iterations as cited by Modest [19] without
entering a loop for convergence. The performance and efficiency
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of IDA with NFDM and experimental validation along with the
radiative properties of medium and wall are discussed in the fol-
lowing section.

4. Results and discussion

Now, the effect of wall and medium properties on the isotherm
contours and the heat transfer is investigated along with the pro-
cedures to simulate the present CCR model for practical/experi-
mental domains.
Table 1
Grid independent test (RC = 10, s = 1, x = 0.5, e = 0.5, hH = 1 and hC = 0.5)

Grid QCH QRH QCC QRC QCb QRb hcenter

21 � 21 1.1443 2.7996 1.6509 1.9156 0.1200 �0.1345 0.8113
31 � 31 1.1686 2.7323 1.7132 1.9344 0.1231 �0.1371 0.8172
41 � 41 1.1763 2.6998 1.7436 1.9452 0.1222 �0.1374 0.8195
45 � 45 1.1721 2.7689 1.7965 2.0621 0.1234 �0.1354 0.8198
51 � 51 1.1708 2.7708 1.7982 2.0710 0.1236 �0.1321 0.8200

Fig. 3. Schematic diagrams of experimented cavity (a), experimen
4.1. Grid independent test

The grid independent test is depicted in Table 1 in order to visu-
alize the effect of grid size on the results. It is observed during sim-
ulation of this model from lower size grid to higher size grid that
the computational time hikes drastically. From Table 1 the grid size
41 � 41 is selected for all the simulations to contemplate the accu-
racy and reliability of results with viable computational expenses.

4.2. Effect of radiative parameters

To visualize and characterize the effect of each parameter on
the phenomenon, it is required to vary one parameter by keeping
other parameters constant. The results of both IDA and ODA are
presented and compared.

4.2.1. Effect of optical thickness (s)
The radiative heat transfer dominates at lower opacity as

depicted in the Fig. 4 and Tables 2 and 3. As the value of opacity
increases, it substantially improves the absorption and out scatter-
ing, which attenuates the radiative intensity.
tal setup (not to scale) (b), Mach–Zehnder interferometer (c).



Fig. 4. Comparison of isotherm patterns of ODA ( ) and IDA (—) at different opacities. When (RC = 10, x = 0.5, e = 0.5).
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The effect of the insulated walls on the isotherm patterns are
depicted in Fig. 4(a), (b) and (c) for IDA model. Fig. 5 depicts the
central non-dimensional temperature for different values of opac-
ity and compared with DOM CCR model [20].Many CCR model
researchers have not reported results for optically thin (
1) med-
ium, except Razzaque et al. [2], as other models break down for this
range [2].
4.2.2. Effect of radiation–conduction parameter (RC)
As the RC value is varied from zero to 100, a significant

change in isotherm patterns for both ODA and IDA are ob-
served in Fig. 6. For higher value of RC, the more bent iso-
therms illustrate the dominance of radiation heat transfer.
Fig. 6(d) demonstrates intense heating of insulated walls, as
the heat flux will not be carried away through these walls.



Table 2
IDA

Constant variables Variable changed QCH QRH QCC QRC QCb QRb hcenter

RC = 10, x = 0.5, e = 0.5 s = 0.0001 0.9977 6.5075 0.7629 0.244 �1.474 1.4081 0.7674
s = 0.001 0.7484 3.7766 1.1318 2.5086 0.0789 �0.1033 0.7848
s = 0.01 0.7290 3.4575 1.1815 2.811 0.2238 �0.2522 0.7875
s = 0.1 0.8003 3.3664 1.1284 2.7393 0.2152 �0.2478 0.7967
s = 0.2 0.8704 3.288 1.3785 2.638 0.1971 �0.2262 0.8037
s = 1 1.1763 2.6998 1.7436 1.9452 0.1222 �0.1374 0.8195
s = 2 1.2736 2.185 1.801 1.3651 0.0795 �0.0902 0.8193
s = 5 1.2634 1.3638 1.5469 0.5986 0.0281 �0.0378 0.8119

s = 1, x = 0.5, e = 0.5 RC = 0.0 0.5000 0.0000 0.5000 0.0000 0.0000 0.0000 0.7500
RC = 0.01 0.5010 0.0028 0.5022 0.0016 0.0002 �0.0002 0.7502
RC = 0.1 0.5099 0.0280 0.5215 0.0157 0.0024 �0.0023 0.7524
RC = 1.0 0.5958 0.2767 0.6984 0.1654 0.0217 �0.0214 0.7698
RC = 10.0 1.1763 2.6998 1.7436 1.9452 0.1222 �0.1374 0.8195
RC = 40.0 2.1084 10.935 3.2902 8.3755 0.2377 �0.3588 0.8191
RC = 100.0 3.2240 27.9677 4.7412 21.11 0.6792 �0.0081 0.8175

s = 1, RC = 10, e = 0.5 x = 0.0 1.5248 2.7006 2.1198 1.8099 0.0948 �0.1048 0.8194
x = 0.5 1.1763 2.6998 1.7436 1.9452 0.1222 �0.1374 0.8195
x = 1.0 0.6362 2.7021 1.0465 2.1813 0.2158 �0.2477 0.7851

s = 1, RC=10, x = 0.5 e = 0.1 1.3625 0.5613 1.5322 0.3242 0.0149 �0.0128 0.7953
e = 0.5 1.1763 2.6998 1.7436 1.9452 0.1222 �0.1374 0.8195
e = 1.0 0.9607 5.6722 1.7035 4.4127 0.2174 �0.3494 0.8296

Table 3
ODA

Constant variables Variable changed QCH QRH QCC QRC QCb QRb hcenter

RC = 10, x = 0.5, e = 0.5 s = 0.0001 0.8389 4.0474 1.0209 2.431 0.0947 �0.1917 0.7674
s = 0.001 0.7215 3.5588 1.1761 2.9177 0.2336 �0.2339 0.7848
s = 0.01 0.7172 3.5033 1.2024 2.9564 0.2348 �0.2348 0.7875
s = 0.1 0.7844 3.4329 1.3081 2.8596 0.2200 �0.2094 0.7970
s = 0.2 0.8513 3.3555 1.4057 2.7521 0.1985 �0.1875 0.8043
s = 1 1.1296 2.7447 1.7896 2.039 0.1167 �0.1046 0.8222
s = 2 1.1889 2.1613 1.8622 1.4477 0.0766 �0.0646 0.8242
s = 5 1.0540 1.2569 1.6282 0.6538 0.0334 �0.0237 0.8224

s = 1, x = 0.5, e = 0.5 RC = 0.0 0.5000 0.0000 0.5000 0.0000 0.0000 0.0000 0.7500
RC = 0.01 0.5009 0.0029 0.5022 0.0016 0.0002 �0.0002 0.7502
RC = 0.1 0.5094 0.0288 0.5218 0.0162 0.0026 �0.0023 0.7524
RC = 1.0 0.5914 0.2842 0.7019 0.1701 0.0229 �0.0209 0.7701
RC = 10.0 1.1296 2.7447 1.7896 2.039 0.1167 �0.1046 0.8222
RC = 40.0 1.9313 10.829 3.4985 9.0987 0.192 �0.1724 0.8401
RC = 100.0 2.7199 26.8735 5.3471 23.958 0.2161 �0.1925 0.8451

s = 1, RC = 10, e = 0.5 x = 0.0 1.4444 2.7223 2.1986 1.9202 0.0888 �0.0755 0.8246
x = 0.5 1.1296 2.7447 1.7896 2.039 0.1167 �0.1046 0.8222
x = 1.0 0.6245 2.752 1.062 2.2742 0.2253 �0.2157 0.7851

s = 1, RC = 10, x = 0.5 e = 0.1 1.3339 0.5762 1.5624 0.3389 0.0164 �0.0119 0.7976
e = 0.5 1.1296 2.7447 1.7896 2.039 0.1167 �0.1046 0.8222
e = 1.0 0.8889 5.6748 1.7718 4.6977 0.2023 �0.1871 0.8324

Fig. 5. The variation of central node temperature at different opacities for RC = 10,
x = 0.5, e = 0.5.
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This feature is not noticed during the simulation of DOM [20]
and ODA.

The CCR models for the non-homogeneous boundary condi-
tions, are not reported by many researchers. So, Fig. 7 is presented
which shows the temperature variation along the x-direction at the
symmetry line Y = 0.5 for different RC values. The results are com-
pared with DOM [20] favorably. A steeper temperature gradient is
observed very close to the hot and cold wall for higher RC value
(100). This signifies the radiation dominant over conduction for
higher RC values (Tables 2 and 3).

4.2.3. Effect of single scattering albedo (x)
Fig. 8 compares the isotherms for non-scattering and purely

scattering medium. For non-scattering medium, the domain core
temperature is more as compared to purely scattering medium
(Tables 2 and 3). But, the conductive heat flux decreases evidently
for purely scattering medium. The bent isotherms for purely scat-
tering (i.e. x = 1) also reflects the radiative heat transfer dominant
over conductive heat transfer.



Fig. 6. Comparison of isotherms of IDA with ODA for different values of RC. (a) RC = 0, (b) RC = 10, (c) RC = 40, (d) RC=100, when s = 1, x = 0.5, e = 0.5.

Fig. 7. Variation of mid-plane temperature (Y = 0.5) and comparison when, s = 1,
x = 0.5, e = 0.5.
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4.2.4. Effect of gray surface emissivity (e)
The boundary walls are gray, black/non-black, diffuse and opa-

que surfaces. As it is displayed in Fig. 9(a) the isotherms are
straight in the domain but slightly bends near the wall because
of diffuse emission of some radiance, this behavior predicts the
nature of isotherms for a reflector wall. From Fig. 9(a) and Tables
2 and 3, it is observed that for lower emissivity conduction mode
predominates near the isothermal walls, as the snug isotherms
indicate this behavior. But in the core the radiative transfer
prevails.

When the emissivity of the wall increases the reflection behav-
ior diminishes that leads to acute bending of isotherms gradually
as these march from core to the insulated wall Fig. 9(b). The con-
duction mode near cold wall prevails as compared to hot wall,
but radiance improves drastically which also improves the core
temperature and central node temperature significantly.

4.2.5. Validation with experimental work
The schematic diagrams of the cavity and experimental set up

are delineated in Fig. 3. During numerical simulation of experimen-
tal conditions of the present model, the low-scattering gray gas
(x = 0.001) with low-extinction co-efficient (b = 0.3) and the insu-
lated walls emissivity (e = 0.96) and the active walls emissivity
(e = 0.05) are considered with opacity s = 0.003 and RC = 0.89. For
calculation of RC ¼ rT3

HL
k value, the characteristic length of the cavity

is taken as 0.01 m, hot wall temperature is 328 K and thermal con-
ductivity of air is 22.48e�03 W/m K. The wall emissivity values for
polished aluminum and bakelite are taken from standard texts[31]
as 0.05 and 0.96, respectively. The extinction coefficient of air is ta-
ken from results of Baek et al. [26] as 0.3.



Fig. 8. Comparison of isotherm pattern of IDA and ODA with variation of single scattering albedo. (a) x = 0, (b) x = 1 when RC = 10, s = 1, e = 0.5.

Fig. 9. Comparison of isotherm pattern of IDA and ODA with variation of surface emissivity. (a) e = 0.1, (b) e = 1 when RC = 10, s = 1, x = 0.5.

Fig. 10. Comparison of IDA (-) and ODA (--) isotherm for experimental setup.
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The CCR model is simulated; the ODA and IDA isotherms are
compared and depicted in Fig. 10. The isotherms bend at the adia-
batic surfaces because of impinging radiative fluxes from the high
emissive walls, but the isotherms remains straight at the central
portion of the domain signifies non-scattering behaviors of the
gray gas Fig. 10. As both top and bottom walls are insulated the
walls are extremely heated, for this reason the isotherms bend near
the insulated walls only. The clustering of isotherms near the cold
wall depicts enhanced conduction mode of heat transfer. The small
size of domain inhibits the dynamics of fluid medium due to den-
sity gradients, for which it is as a conduction–radiation phenome-
non [1]. The comparison of isotherm patterns of IDA with
interferogram is depicted in Fig. 12, and the detailed output after
post processing of the model is shown in Table 4.
Table 4
Experimental simulation for hot wall at 55 �C and cold wall at 35 �C

QCH QRH QCC QRC QCb QRb hcenter

0.0838 0.2112 0.1087 0.1827 0.0071 �0.0063 0.9693

Aluminum metal (e = 0.05) and insulated walls (e = 0.96) (s = 0.003, RC = 0.89,
x = 0.001, b = 0.3).
(RC = 0.89, s = 0.003, x = 0.001, eH,C = 0.05, eb,t = 0.96, hH = 1 and hC = 0.939).



Fig. 11. Interferogram captured by Mach–Zehnder interferometer.

Fig. 12. Comparison of IDA isotherm and interferogram.

Fig. 13. Model of a neuron.
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The comparison of isotherm patterns for ODA and IDA signifies
the more departure of isotherms nearing to the insulated wall in
Fig. 10. The bending of isotherms at the proximity of the wall is
also depicted in the interferogram captured by the Mach–Zehnder
interferometer Fig. 11. The natural trend of isotherm pattern
shown in Fig. 11 interferograms is found similar with that of the
IDA isotherms in Fig. 10. Therefore, the IDA with NFDM concept
of modeling is realistic. Furthermore, the authors found difficulty
in simulation of this case by hybrid method [22] as the overall
opacity of this cavity (0.003) is very small. The output result tables
pertaining to IDA, ODA and experimental cavity are presented for
bench marking the solution.

5. Conclusion

The present CCR model is simulated by applying the NFDM con-
cept for the calculation of view factor, solid angle and average opti-
cal thickness of rays. The present model has capability to simulate
the physical situation like the air filled cavity, as most of the CCR
models break down during simulation of lower overall opacity
(<0.1) medium[2]. The special features of this CCR model are out-
lined as follows.

1. It is versatile and robust in producing results, i.e. for overall
opacity 0.0001 to 10, scattering albedo 0 to 1, surface emissivity
any value just above zero to one, and radiation–conduction
parameter from 0 to as high as 100.

2. The limitation of this model is its non-responding nature for
reflecting boundary (i.e. for surface emissivity zero),but submits
results for very low emissivity (0.1) which is CPU intensive.
3. It submits result from very low opacity to very high opacity with-
out much fluctuation or oscillation in the output values, although
the computational time is substantially significant for both
extreme values. So, it is advisable to implement P1 model for
higher opacity (1–10) for the purpose of computational economy.
For lower opacity range (<1) the IDA implementation is more per-
suasive for its accuracy and boundary wall effects.

4. The properties of participating gasses can be estimated by
matching the interferogram with the present radiation model
output isotherm patterns for a specific set of radiative proper-
ties values.
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Appendix. Models of a neuron and its application for
development of IDA

A neuron is an information processing unit that is fundamental
to the operation of a neural network. The model of a neuron, which
forms the basis for designing neural networks, is explained and
shown in Fig. 13.

Here, three basic elements of the neuronal model are identified:

1. A set of synapses or connecting links, each of which is charac-
terized by a weight or strength of its own. Specifically, a signal
(temperature or irradiation) xj at the input of the synapse j con-
nected to neuron k is multiplied by the synaptic weight (expo-
nential decay of intensity and solid angle) wkj. It is important to
make a note of the manner in which the subscripts of the
synaptic weight wkj are written. The first subscript refers to
the neuron in question (i.e. a node under consideration)
and the second subscript (i.e. sub-node) refers to the input
end of the synapse to which the weight refers.

2. An adder for summing the input signals, weighted by the
respective synapses of the neuron; the operations described
here constitutes a linear combiner.

3. An activation function for limiting the amplitude of the output
of a neuron. The activation function is also referred to as a
squashing function in that it squashes (limits) the permissible
amplitude range of the output signal to some finite value. In this
radiation modeling activation function is implemented as
improved values are just the values after considering the effect
of all sub-nodes on a particular node.

In this formulation no bias is used, as P1 approximation result is
some how numerically unbiased for optically thin medium and IDA
formulation just considers the geometrical position of each nodes
lying on the domain.

In mathematical terms, we may describe a neuron k by writing
the following pair of equations:

uk ¼
Xm

j¼1

wkjxj ð35Þ
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and

yk ¼ uðuk þ bkÞ; ð36Þ

where x1, x2, x3, . . ., xm are the input signals.
wk1, wk2, wk3, . . ., wkm are the synaptic weights of neuron k.
uk is the linear combiner output due to the input signals.
bk is the bias; and u(.) is the activation function.
yk is the output signal of the neuron.
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